
Bessel Functions

1 A Special Class of Equations

Consider

(1 + RMxM)
d2y

dx2
+

1

x
(P0 + PMxM)

dy

dx
+

1

x2
(Q0 + QMxM)y = 0 (1)

where, M is a positive integer. This equation is a special case of

Ly ≡ R(x)
d2y

dx2
+

1

x
P (x)

dy

dx
+

1

x2
Q(x)y = 0 (2)

since R(x) = 1 + RMxM , P (x) = P0 + PMxM and Q(x) = Q0 + QMxM . Let

y(x) =
∞
∑

k=0

akx
k+s (3)

The Indicial Equation should be the same as before, i.e.,

f(s) = s2 + (P0 − 1)s + Q0 = 0 (4)

For k = 1, 2, 3, · · ·,

f(s + k)ak +
k
∑

i=1

gi(s + k)ak−i = 0 (5)

But

gi(s) = Ri(s − i)(s − i − 1) + Pi(s − i) + Qi (6)

for i = 1, 2, 3, · · ·. Thus,

gi(s) = 0 (7)

for i = 1, 2, 3, · · · ,M − 1,M + 1, · · ·, and

gM(s) 6= 0 (8)

When k = 1,

f(s + 1)a1 + g1(s + 1)a0 = 0 ⇒ a1 = 0 (9)

When k = 2,

f(s + 2)a2 +
2
∑

i=1

gi(s + 2)a2−i = 0 ⇒ a2 = 0 (10)

Thus,
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a1 = a2 = · · · = aM−1 = 0 (11)

However, when k = M

f(s + M)aM +
M
∑

i=1

gi(s + M)ak−i = f(s + M)aM + gM(s + M)a0 = 0

aM = −gM(s + M)

f(s + M)
a0 (12)

When k = M + 1,

f(s + M + 1)aM+1 + gM(s + M + 1)a1 = f(s + M + 1)aM+1 = 0

aM+1 = 0 (13)

Similarly,

aM+1 = aM+2 = · · · = a2M−1 = 0 (14)

When k = 2M ,

f(s + 2M)a2M + gM(s + 2M)aM = 0

a2M = −gM(s + 2M)

f(s + 2M)
aM =

gM(s + 2M)

f(s + 2M)

gM(s + M)

f(s + M)
a0 (15)

Thus,

anM+1 = anM+2 = · · · = a(n+1)M−1 = 0 (16)

and

a(n+1)M = −gM(s + nM + M)

f(s + nM + M)
anM (17)

where n = 0, 1, 2, · · ·.
Therefore,

y(x) =
∞
∑

n=0

anMxnM+s =
∞
∑

n=0

BnxnM+s (18)

The exceptional cases will be

• s1 = s2, or

• s1 − s2 = nM , where n is a positive integer.
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2 A Summary of Bessel Functions

The Bessel function satisfy

x2 d2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0 (19)

where p ≥ 0.

• First Solution

Jp(x) =
∞
∑

k=0

(−1)k (x/2)2k+p

Γ(k + p + 1)k!
(20)

• Second Solution

1. p 6= 0 and p is not an integer

J−p(x) =
∞
∑

k=0

(−1)k (x/2)2k−p

Γ(k − p + 1)k!
(21)

2. p = 0

Y0(x) =
2

π

[

(

ln
x

2
+ γ
)

J0(x) −
∞
∑

k=1

(−1)kϕ(k)
(x/2)2k

(k!)2

]

(22)

where

ϕ(k) =
k
∑

m=1

1

m
(23)

γ( Euler constant ) = lim
k→∞

[ϕ(k) − ln k] = 0.57721566 · · · (24)

3. p = ` = a positive integer

Y`(x) =
2

π

{

(

ln
x

2
+ γ
)

J`(x) − 1

2

`−1
∑

k=0

(` − k − 1)!(x/2)2k−`

k!

−1

2

∞
∑

k=0

(−1)k [ϕ(k) + ϕ(k + `)]
(x/2)2k+`

k!(` + k)!

}

(25)
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3 Origins of Bessel Functions

Solutions of the differential equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − p2)y = 0 (26)

or

x
d

dx

(

x
dy

dx

)

+ (x2 − p2)y = 0 (27)

are known as Bessel functions of order p, where p is real and non-negative.

Since M = 2, the solution is of the following form:

y(x) =
∞
∑

k=0

Bkx
2k+s (28)

After substituting this into equation (26), the resulting indicial equation yields:

s1 = p s2 = −p (29)

Thus, the exceptional cases occur only when

• s1 = s2 = 0, i.e., p = 0.

• s1 − s2 = 2p = 2`, i.e., p = ` = a positive integer.

We can nonetheless always obtain the first solution for s1 = p:

y1(x) = B0

[

xp +
∞
∑

k=1

(−1)kx2k+p

22kk!(1 + p)(2 + p) · · · (k + p)

]

(30)

According to the definition of gamma function, this solution can be written as

y1(x) = B0Γ(1 + p)
∞
∑

k=0

(−1)kx2k+p

22kΓ(k + p + 1)k!

= 2pΓ(1 + p)B0

∞
∑

k=0

(−1)k(x/2)2k+p

Γ(k + p + 1)k!
(31)

Here, let us define

Jp(x) =
∞
∑

k=0

(−1)k(x/2)2k+p

Γ(k + p + 1)k!
(32)

and Jp(x) is known as the Bessel function of the first kind, of order p.
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The second solution is presented in the sequel:

1. If p 6= 0 and is not an integer, a second solution is obtained by replacing p by −p
in the first solution, i.e.,

J−p(x) =
∞
∑

k=0

(−1)k(x/2)2k−p

Γ(k − p + 1)k!
(33)

Thus the complete solution of equation (26) is

y(x) = c1Jp(x) + c2J−p(x) (34)

However, if p is an integer, it can be shown that

J−p(x) = (−1)pJp(x)

Thus, Jp(x) and J−p(x) are linearly independent in this situation.

2. If p = 0, i.e., s1 = s2 = 0, then

y2(x) =

[

∂y(x, s)

∂s

]

s=0

(35)

The result of this derivation is

y2(x) = B0

[

J0(x) ln x −
∞
∑

k=1

(−1)kϕ(k)
(x/2)2k

(k!)2

]

(36)

where

ϕ(k) =
k
∑

m=1

1

m

Define

Y (0)(x) = J0(x) ln x −
∞
∑

k=1

(−1)kϕ(k)
(x/2)2k

(k!)2
(37)

Since equation (26) is linear, a linear combination of the above two solutions,
i.e., J0(x) and Y (0)(x), is still a solution of the original differential equation. An
alternative form of the second solution is thus more often used:

Y0(x) =
2

π

[

Y (0) + (γ − ln 2)J0(x)
]
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=
2

π

[

(

ln
x

2
+ γ
)

J0(x) +
∞
∑

k=1

(−1)k+1ϕ(k)
(x/2)2k

(k!)2

]

(38)

where
γ = lim

k→∞

[ϕ(k) − ln k] = 0.57721566490 · · ·

This standard particular solution is called Bessel function of the second kind of

order zero or Neumann function of order zero. This definition of the Bessel function
of the 2nd kind is more convenient to use and thus is usually preferred, because
of the fact that the behavior of the function Y0(x), for large value of x, is more
comparable with the behavior of J0(x). Thus, the complete solution in this case is

y(x) = c1J0(x) + c2Y0(x) (39)

3. p = ` = a positive integer.

y2(x) =

{

∂

∂s
[(s + `)y(x, s)]

}

s=−`

(40)

The result

Y`(x) =
2

π

{

(

ln
x

2
+ γ
)

J`(x) − 1

2

`−1
∑

k=0

(` − k − 1)!(x/2)2k−`

k!

−1

2

∞
∑

k=0

(−1)k [ϕ(k) + ϕ(k + `)]
(x/2)2k+`

k!(` + k)!

}

(41)

Notice that the second solution is defined differently, depending on whether the
order p is an integer or not. To provide uniformity of formalism and numerical
tabulation. it is desirable to adopt a form of the second solution that is valid for

all values of the order. The standard second solution Yp(x) defined for all p is

Yp(x) =
1

sin pπ
[Jp(x) cos pπ − J−p(x)]

Y`(x) = lim
p→`

Yp(x)
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Asymptotic Behaviors of Bessel Functions

J0(0) = 1 (42)

J1(0) = J2(0) = · · · = 0 (43)

J0(∞) = J1(∞) = · · · = 0 (44)

Y0(0) = Y1(0) = Y2(0) = · · · = −∞ (45)

Y0(∞) = Y1(∞) = · · · = 0 (46)

Next, let y = u/
√

x, then substitute it into equation (26) to obtain

d2u

dx2
+

(

1 − p2 − 1/4

x2

)

u = 0 (47)

As x → ∞,

1 � p2 − 1/4

x2

Thus,
d2u

dx2
+ u ' 0 (48)

y ' 1√
x

(A cos x + B sin x) (49)

It can be shown that, as x → ∞,

Jp ∼
√

2

πx
cos (x − αp) (50)

Yp ∼
√

2

πx
sin (x − αp) (51)

where,

αp = (2p + 1)
π

4
On the other hand, if p = 1/2, then equation (47) can be reduced to

d2u

dx2
+ u = 0 (52)

Thus, the complete solution is of the form

y =
1√
x

(A cos x + B sin x) (53)

The standard solutions are

J1/2(x) =

√

2

πx
sin x (54)

J−1/2(x) =

√

2

πx
cos x (55)
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4 Modified Bessel Functions

A slight variation of the standard Bessel equation (of order p) is the Bessel equation of
order p with parameter α:

x2 d2y

dx2
+ x

dy

dx
+ (α2x2 − p2)y = 0

This equation can be transformed into the standard form by substituting

t = αx

Thus,

t2
d2y

dt2
+ t

dy

dt
+ (t2 − p2)y = 0

The solution of this equation is

y = c1Jp(t) + c2J−p(t) = c1Jp(αx) + c2J−p(αx)

or

y = c1Jp(t) + c2Yp(t) = c1Jp(αx) + c2Yp(αx)

Next, let us consider

x2 d2y

dx2
+ x

dy

dx
− (x2 + p2)y = 0 (56)

which is also an alternative form of the Bessel’s equation. If we substitute t = ix into
this equation, the resulting equation is

t2
d2y

dt2
+ t

dy

dt
+ (t2 − p2)y = 0 (57)

which is the same as the standard Bessel’s equation.

• If p is not zero or a positive integer, the general solution is

y(x) = c1Jp(ix) + c2J−p(ix) (58)

• Otherwise,

y(x) = c1J`(ix) + c2Y`(ix) (59)
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In the above equations, it is necessary to use

Jp(ix) =
∞
∑

k=0

(−1)k

Γ(k + p + 1)k!
(
ix

2
)2k+p = ip

∞
∑

k=0

1

Γ(k + p + 1)k!
(
x

2
)2k+p (60)

Define

Ip(x) =
∞
∑

k=0

1

Γ(k + p + 1)k!
(
x

2
)2k+p = i−pJp(ix) (61)

where Ip(x) is referred to as the modified Bessel function of the first kind of order p.
Thus, the complete solution for non-zero and non-integer p is

y(x) = c1Ip(x) + c2I−p(x) (62)

If p = ` = a non-negative integer, the second solution can be redefined as

K`(x) =
π

2
i`+1 [J`(ix) + iY`(ix)] (63)

where K`(x) is referred to as the modified Bessel function of the second kind of order `.

Asymptotic Behavior of Ip(x) and Kp(x) as x → ∞

Ip(x) ∼ ex

√
2πx

(64)

Kp(x) ∼ e−x

√

2x/π
(65)

5 Properties of Bessel Functions

• For small values of x, i.e., as x → 0,

Jp(x) ∼ 1

2pΓ(p + 1)
xp (66)

J−p(x) ∼ 2p

Γ(−p + 1)
x−p (p 6= `) (67)

Yp(x) ∼ −2p(p − 1)!

π
x−p (p 6= 0) (68)

Y0(x) ∼ 2

π
ln x (69)

Ip(x) ∼ 1

2pΓ(p + 1)
xp (70)

I−p(x) ∼ 2p

Γ(−p + 1)
x−p (p 6= `) (71)
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Kp(x) ∼ 2p−1(p − 1)!x−p (p 6= 0) (72)

K0(x) ∼ − ln x (73)

Notice that only Jp(x) and Ip(x) are finite at x = 0 for p ≥ 0.

• Differential properties:

d

dx
[xpyp(αx)] =







αxpyp−1(αx) for y ≡ J, Y, I

−αxpyp−1(αx) for y ≡ K
(74)

d

dx

[

x−pyp(αx)
]

=







−αx−pyp+1(αx) for y ≡ J, Y,K

αx−pyp+1(αx) for y ≡ I
(75)

These formulas are established for Jp and Yp by considering their series definitions,
and for the remaining functions by considering their definitions in terms of Jp and
Yp.

From equation (74),

dyp(αx)

dx
=







αyp−1(αx) − (p/x)yp(αx) for y ≡ J, Y, I

−αyp−1(αx) − (p/x)yp(αx) for y ≡ K
(76)

From equation (75),

dyp(αx)

dx
=







−αyp+1(αx) + (p/x)yp(αx) for y ≡ J, Y,K

αyp+1(αx) + (p/x)yp(αx) for y ≡ I
(77)

– For J and Y ,

By adding equations (76) and (77) and then dividing the result by 2, one can
obtain

dyp(αx)

dx
=

α

2
[yp−1(αx) − yp+1(αx)] (78)

By subtracting equation (77) from equation (76) and then dividing the result
by 2, one can obtain

yp−1(αx) + yp+1(αx) =
2p

αx
yp(αx) (79)
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– For I,

dIp(αx)

dx
=

α

2
[Ip−1(αx) + Ip+1(αx)] (80)

Ip−1(αx) − Ip+1(αx) =
2p

αx
Ip(αx) (81)

– For K,

dKp(αx)

dx
= −α

2
[Kp−1(αx) + Kp+1(αx)] (82)

Kp−1(αx) − Kp+1(αx) = − 2p

αx
Kp(αx) (83)

[Example]

Using the table of J0 and J1 to integrate

I =

∫ 2

1

x−3J4(x)dx

[Solution]

From (75) with p = 3 and α = 1 we obtain

∫ 2

1

x−3J4(x)dx = −x−3J3(x)
∣

∣

x=2

x=1

By (79) with p = 2 and α = 1 we have

J1(x) + J3(x) =
4

x
J2(x) ⇒ J3(x) =

4

x
J2(x) − J1(x)

Again by (79) with p = 1 and α = 1,

J0(x) + J2(x) =
2

x
J1(x) ⇒ J2(x) =

2

x
J1(x) − J0(x)

Thus,

J3(x) =
4

x

[

2

x
J1(x) − J0(x)

]

− J1(x) =

(

8

x2
− 1

)

J1(x) − 4

x
J0(x)

From Table A1,

J1(2) = 0.5767; J0(2) = 0.2239 ⇒ J3(2) = J1(2) − 2J0(2) = 0.1289

J1(1) = 0.4401; J0(1) = 0.7652 ⇒ J3(1) = 7J1(1) − 4J0(1) = 0.0199

I = −
[

1

8
J3(2) −

1

1
J3(1)

]

= 0.0038
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[Example]

Determine J 3

2

(x) and J
−

3

2

(x)

[Solution]

From (79), (54) and (55) and let p = 1/2 and α = 1, we get

J 3

2

(x) =
1

x
J 1

2

− J
−

1

2

(x) =

√

2

πx

(

sin x

x
− cos x

)

From (79), (54) and (55), and let p = −1/2 and α = 1, we can obtain

J
−

3

2

(x) = −1

x
J
−

1

2

− J 1

2

(x) = −
√

2

πx

(cos x

x
+ sin x

)

6 Differential Equations Satisfied by Bessel Func-

tions

Given that the solution of

X2 d2Y

dX2
+ X

dY

dX
+ (X2 − p2)Y = 0 (84)

can be written in the form

Y = Zp(X) =







c1Jp(X) + c2J−p(X) p 6= 0 and p 6= integer

c1Jp(X) + c2Yp(X) p = 0 or p = integer
(85)

Let

X = f(x) Y =
y

g(x)

Note that

d

dX
=

d

dx

dx

dX
=

1

f ′(x)

d

dx
(86)

Substitution into equation (84) yields

f
d

dx

[

1

f ′

d

dx

(

y

g

)]

+
d

dx

(

y

g

)

+
f ′

f
(f 2 − p2)

y

g
= 0 (87)

The solution of this equation is

y = g(x)Zp[f(x)] (88)

In particular, if we select
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f(x) =

√
d

s
xs (89)

g(x) = x(1−a)/2 exp

[

− b

r
xr

]

(90)

p =
1

s

√

(

1 − a

2

)2

− c (91)

where a, b, c, d , r and s are constants. Then equation (87) can be transformed to

x2 dy2

dx2
+ x(a + 2bxr)

dy

dx
+
[

c + dx2s − b(1 − a − r)xr + b2x2r
]

y = 0 (92)

The solution of this equation is

y = g(x)Zp[f(x)] = x
1−a

2 exp

[

− b

r
xr

]

Zp

[√
d

s
xs

]

(93)

where

p =
1

s

√

(

1 − a

2

)2

− c

Thus, if it is possible to identify a particular second order differential equation with
equation (92) by suitably choosing the constants a, b, c, d , r and s, the solution is
immediately given in terms of Bessel function of order p.

[Example] x2y′′ + xy′ + (λ2x2 − p2)y = 0 (λ 6= 0)

Since a = 1, b = 0, c = −p2, d = λ2, r = r and s = 1, then

p =
1

1

[

(

1 − 1

2

)2

− (−p2)

]0.5

= p

Thus,
y = Zp(λx)

[Example] x2y′′ + xy′ − (λ2x2 + p2)y = 0 (λ 6= 0)

Since a = 1, b = 0, c = −p2, d = −λ2, r = r and s = 1, then

p =
1

1

[

(

1 − 1

2

)2

− (−p2)

]0.5

= p

Thus,
y = Zp(iλx)
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[Exercise] y′′ + 3x5y = 0

Ans:

y =
√

xZ 1

7

(

2
√

3

7
x

7

2

)

[Exercise] y′′ + 5x4y = 0

Ans:

y =
√

xZ 1

6

(√
5

3
x3

)
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